Salicylic Acid Accumulation in Tomato Root Induced by Endopytic Bacteria and Exogenous Salicylic Acid Response to Ralstonia syzygii subsp. indonesiensis Infection
Keywords:
Arthrobacter sp, Bacillus thuringiensis, Bacterial wilt;, Induce resistance.Abstract
Ralstonia syzygii subsp. indonesiensis causes bacterial wilt disease is a soil-borne pathogen that causes serious damage and major losses in tomato production. To overcome this, the use of Arthrobacter sp. and Bacillus thuringiensis as biological elicitors and salicylic acid as a chemical elicitor were teste their capacity to induce tomato plants to become resistant. Experiments were carried out on the susceptible tomato cultivar "Servo F1" in sterilized soil to test the elicitor's effectiveness in triggering plant defense mechanisms in response to salicylic acid accumulation in afflicted roots. Arthrobacter sp. and salicylic acid treatments significantly reduced the disease severity due to bacterial wilt compared to control treatment within three weeks after inoculation. Tomato with once week application intensity was also better than every two weeks application intensity. The AUDPC value showed by Arthrobacter sp. was 1449.7 with an application intensity every two weeks and 148 with an application intensity once a week compared to control with an AUDPC value of 4962.9. Furthermore, endophytic bacteria and salicylic acid can induce salicylic acid accumulation in pathogen-inoculated tomato roots. The results show that the elicitor is either biological or chemicals play an important role as inducers of plant defenses, thereby reducing bacterial wilt disease.
References
Aviles, G. M. E., Flores-Cortez, I., Hernández-Soberano, C., Santoyo, G., and Valencia- Cantero, E. (2016). The plant growth promoting rhizobacterium Arthrobacter agilis UMCV2 endophytically colonizes Medicago truncatula. Rev. Argent. Microbiol. 48 : 342–346.
Buensanteai, N., Mukherjee, P. K., Horwitz, B.A., Cheng, C., Dangott, L. J., Kenerley, C.M. (2010). Expression and purification of biologically active Trichoderma virens proteinaceous elicitor Sm1 in pichia pastoris. Protein Express Purif. 72:131–138.
Buensanteai, N., Thumanu, K., Sompong, M., Athinuwat, D., and Prathuangwong, S. (2012). The FTIR spectroscopy investigation of the cellular components of cassava after sensitization with plant growth promoting rhizobacteria, Bacillus subtilis CaSUT007. Afr J Microbiol Res. 6: 603–610.
Carrer F, R., Oliveira, R.M., Dias, V.D., Rocha, G.A., Dianese, E ́.d.C., and Cunha, M.G.d. (2016). Selection of tomato accessions resistant to Verticilium wilt. Pesqui. Agropecu ́aria Trop. 46 : 429–433.
Caruana, J.C., Dhar, N. and Raina, R. (2020). Overexpression of Arabidopsis microRNA167 induces salicylic acid-dependent defense against Pseudomonas syringae through the regulation of its targets ARF6 and ARF8. Plant Direct. 4 : 02- 70.
Catinot, J., Buchala, A., Abou-Mansour, E. and Me ́ traux, J.P. (2008). Salicylic acid production in response to biotic and abiotic stress depends on isochorismate in Nicotiana benthamiana. FEBS Lett. 5(82) : 473– 478.
Chaudhary, J., Alisha, A., Bhatt, V., Chandanshive, S., Kumar, N., Mir, Z., Kumar, A., Yadav, S.K., Shivaraj, S.M., Sonah, H., and Deshmukh, R. (2019). Mutation breeding in tomato: Advances, applicability, and challenges. Plants 8 (5): 128.
Chin-A-Woeng, T.F.C., Bloemberg, G.V., and Lugtenberg, B.J.J. (2003). Phenazines and their role in biocontrol by Pseudomonas bacteria. New Phytol. 157: 503–523.
Chowdhury, S.P., Uhl, J., Grosch, R., Alquéres, S., Pittroff, S., Dietel, K., Schmitt-Kopplin, P., Borriss, R. and Hartmann, A. (2015). Cyclic Lipopeptides of Bacillus amyloliquefaciens subsp plantarum Colonizing the Lettuce Rhizosphere Enhance Plant Defense Responses Toward the Bottom Rot Pathogen Rhizoctonia solani. Mol. Plant Microbe Interact. 28 : 984–995.
Cordova, C, O., Adame-Alvarez, R. M., Acosta-Gallegos, J. A., and Heil, M. (2012). Domestication affected the basal and induced disease resistance in common bean (Phaseolus vulgaris). Eur. J. Plant Pathol. 134: 367–379.
Elsharkawy, M. M., Nakatani, M., Nishimura, M., Arakawa, T., Shimizu, M., and Hyakumachi, M. (2015). Control of tomato bacterial wilt and root-knot diseases by Bacillus thuringiensis CR-371 and Streptomyces avermectinius NBRC14893. Acta Agriculturae Scandinavica, Section B—Soil & Plant Science. 65(6): 575-580.
Genin, S. (2010). Molecular traits controlling host range and adaptation to plants in Ralstonia solanacearum. New Phytol. 187 : 920–928.
Heil, M and Bostock, R. M. (2002). Induced systemic resistance (ISR) against pathogens in the context of induced plant defences. Ann. Bot. 89(5): 503– 512.
Hyakumachi, M., Nishimura, M., Arakawa, T., Asano, S., Yoshida, S., Tsushima, S., and Takahashi, H. (2013). Bacillus thuringiensis suppress bacterial wilt disease caused by Ralstonia solanacearum with systemic induction of defense-related gene expression in tomato. Microbe Environ. 28:128–134.
Jiang, C.H., Fan, Z.H., Xie, P., and Guo, J.H. (2016). Bacillus cereus AR156 Extracellular Polysaccharides Served as a Novel Micro-associated Molecular Pattern to Induced Systemic Immunity to Pst DC3000 in Arabidopsis. Front. Microbiol. 7 : 664.
Kloepper, J.W., Tuzun, S., and Kuc, J.A. (1992). Proposed definitions related to induced disease resistance. Biocontrol Sci. Technol. 2 : 349–351.
Kong, H. G., Shin, T. S., Kim,T. H. and Ryu, C. M. (2018) Stereo isomers of the Bacterial Volatile Compound 2,3-Butanediol Differently Elicit Systemic Defense Responses of Pepper against Multiple Viruses in the Field. Front. Plant Sci. 9 : 90.
Lastochkina, O., Pusenkova, L., Garshina, D., Yuldashev, R., Shpirnaya, I., Kasnak, C., and Aliniaeifard, S. (2020). The effect of endophytic bacteria Bacillus subtilis and salicylic acid on some resistance and quality traits of stored Solanum tuberosum L. tubers infected with fusarium dry rot. Plants. 9(6), 738.
Le Thanh, T., Thumanu, K., Wongkaew, S., Boonkerd, N., Teaumroong, N., Phansak, P, and Buensanteai, N. (2017). Salicylic acid-induced accumulation of biochemical components associated with resistance against Xanthomonas oryzae pv. oryzae in rice. J Plant Interact. 12(1):108–120.
Lebeau, A., Daunay, M. C., Frary, A., Palloix, A., Wang, J. F., Dintinger, J., Chiroleu, F., Wicker, E., and Prior, P. (2011). Bacterial wilt resistance in tomato, pepper, and eggplant: Genetic resources respond to diverse strains in the Ralstonia solanacearum species complex. Phytopathology 101:154-165
Leiwakabessy, C., Sinaga, M. S., Mutaqin, K. H., Trikoesoemaningtyas, T., and Giyanto, G. (2017). Asam salisilat sebagai penginduksi ketahanan tanaman padi terhadap penyakit hawar daun bakteri. Jurnal Fitopatologi Indonesia, 13(6) : 207-207.
Madden, L. V., Hughes, G., and van den Bosch, F. (2007). The study of plant disease epidemics. St. Paul, USA: American Phytopathological Society (APS Press).
Manganiello, G., Sacco, A., Ercolano, M.R., Vinale, F., Lanzuise, S., Pascale, A., Napolitano, M., Lombardi, N., Lorito, M., and Woo, S.L. (2018). Modulation of Tomato Response to Rhizoctonia solani by Trichoderma harzianum and Its Secondary Metabolite Harzianic Acid. Front. Microbiol. 9 : 19-66.
Mostafanezhad, H., Sahebani, N. and Zarghani, S. N. (2014). Control of root-knot nematode (meloidogyne javanica) with combination of arthrobotrys oligospora and salicylic acid and study of some plant defense responses. Biocontrol Sci Technol. 24(2):203–215.
Nair, A.B. and Umamaheswaran, K. (2016). Enzymatic Responses to SriLankan cassava mosaic virus infection in cassava plants after grafting. Int J Appl Pure Sci Agric 2:165–170
Oostendorp, M., Kunz, W., Dietrich, B., and Staub, T. (2001). Induced disease resistance in plants by chemicals. J. Plant Pathol. 107 : 19–28.
Pandey, P., Irulappan, V., Bagavathiannan, M.V. and Senthil-Kumar, M. (2017). Impact of Combined Abiotic and Biotic Stresses on Plant Growth and Avenues for Crop Improvement by Exploiting Physio-morphological Traits. Front. Plant Sci. 8 : 537.
Pieterse, C. M., Zamioudis, C., Berendsen, R. L., Weller, D. M., Van Wees, S. C. and Bakker, P. A. (2014). Induced systemic resistance by beneficial microbes. Ann Rev Phytopathol. 52: 347–375.
Prsic, J. and Ongena, M. (2020). Elicitors of Plant Immunity Triggered by Beneficial Bacteria. Front. PlantSci. 11: 594-530.
Rahmadhani, N., Pinem, M. I., and Safni, I. (2022). Spread of bacterial wilt disease on potato in three villages in Silimakuta District, Simalungun, North Sumatra, Indonesia. J Trop Plant Pests Dis, 22, 162-167.
Ryu, C, M., Farag, M.A., Hu, C.-H., Reddy, M.S., Kloepper, J.W. and Paré, P.W. (2004) Bacterial volatiles induce systemic resistance in Arabidopsis. Plant Physiol. 134: 1017–1026.
Saengchan, C., Sangpueak, R., Le Thanh, T., Phansak, P., and Buensanteai, N. (2022). Induced resistance against Fusarium solani root rot disease in cassava plant (Manihot esculenta Crantz) promoted by salicylic acid and Bacillus subtilis. Acta Agriculturae Scandinavica, Section B—Soil & Plant Science, 72(1), 516-526.
Safni, I., Cleenwerk, I., De Vos, P., Fegan, M., Sly, L., and Kappler, U. (2014). Polyphasic taxonomic revision of the Ralstonia solanacearum spesies complex: Proposal to emend the description of Ralstonia solanacearum and Ralstonia syzygii and reclassify current R. syzygii strains as Ralstonia syzygii subsp. syzygii subsp. nov., R. sonalacearum phylotipe IV strains as Ralstonia syzygii subsp. indonesiensis subsp. nov., Banana Blood Disease Bacterium strains as Ralstonia syzygii subsp. celebesensis subsp. nov., and R. solanacearum phylotipe I and III strains as Ralstonia pseudosolanacearum sp. nov. International J. of Systematic and Evolutionary Microbiology. 64: 3087-3103.
Silverman, P., Seskar, M., Kanter, D., Schweizer, P., and Metraux, J. (1995). Salicylic acid in rice (biosynthesis, conjugation, and possible role). Plant Physiol. 108: 633-639.
Song, J.T., Lu, H., McDowell, J.M. and Greeberg, J.T. (2004). A key role for ALD1 in activation of local and systemic defenses in Arabidopsis. Plant J. 40, 200–212.
Spletzer, M.E., and Enyedi, A.J. (1999). Salicylic acid induces resistance to Alternaria solani in hydroponically grown tomato, Phytopathology 89 : 722–727.
Sujoko, Ahmad., Mustofa, L., and Dwi, P. (2015). Kajian sterilisasi media tumbuh jamur tiram putih (Pleurotus Ostreatus (L) Fries) menggunakan steamer baglog." Jurnal Keteknikan Pertanian Tropis dan Biosistem 3(3) : 303-314.
Uppalapati, S.R., Ishiga, Y., Wangdi, T., Kunkel, B.N., Anand, A., Mysore, K.S. and Bender CL (2007) The phytotoxin coronatine contributes to pathogen fitness and is required for suppression of salicylic acid accumulation in tomato inoculated with Pseudomonas syringae pv. tomato DC3000. Mol. Plant-Microbe Interact. 20 : 955–965.
Van der Plank, J. E. (1963). Plant diseases. Elsevier Science.
Velázquez-Becerra, C., Macías-Rodríguez, L. I., López-Bucio, J., Flores-Cortez, I., Santoyo, G., Hernández-Soberano, C., and Valencia-Cantero, E. (2013). The rhizobacterium Arthrobacter agilis produces dimethylhexadecylamine, a compound that inhibits growth of phytopathogenic fungi in vitro. Protoplasma. 250: 1251-1262.
Walters D, Newton A, Lyon G. (2007). Induced resistance for plant defence. UK: Blackwell Publishing.
Warrier, R. R., Paul, M., and Vineetha, M. V. (2013). Estimation of salicylic acid in Eucalyptus leaves using spectrophotometric methods. Genetics and plant physiology. 3(1-2): 90-97.
Wenas, M., Manengkey, G. S. J, and Makal, H. V. G. (2017). Insidensi penyakit layu bakteri pada tanaman kentang (Solanum tuberosum L.) di Kecamatan Modoinding [The incidence of bacterial wilt disease in potato plants (Solanum tuberosum L.) in District of Modoinding]. Cocos. 7(3): 1–11.
Winstead, N. N. and Kelman, A (1952). Inoculation techniques for evaluating resistance to Pseudomonas solanacearum. Phytopathology. 42: 628-634.
Zhang, Z., Long, Y., Yin, X., and Yang, S. (2021). Sulfur-induced resistance against Pseudomonas syringae pv. actinidiae via triggering salicylic acid signaling pathway in kiwifruit. International Journal of Molecular Sciences, 22(23), 12710.
Zhang, W., Zhao, F., Jiang, L., Chen, C., Wu, L., and Liu, Z. (2018). Different Pathogen Defense Strategies in Arabidopsis : More than Pathogen Recognition. Cells. 7 : 252